Lesson Title: Origins of Life

Objectives: Students should be able to understand and explain the Big Bang theory in the formation of the universe. Students should also be able to place the big bang theory in the geologic time scale and understand the events that have occurred after it.

Benchmarks:

E5.1b Describe how the Big Bang theory accounts for the formation of the universe.

E5.3A Explain how the solar system formed from a nebula of dust and gas in a spiral arm of the Milky Way Galaxy about 4.6 Ga (billion years ago).

E5.3C Relate major events in the history of the Earth to the geologic time scale, including formation of the Earth, formation of an oxygen atmosphere, rise of life, Cretaceous-Tertiary (K-T) and Permian extinctions, and Pleistocene Ice Age.

Vocabulary: Big Bang, Galaxy, Nebulae, Geologic time-scale

Materials: Balloon, Marker, String, Meterstick

Introduction:
Pre-show: Students will be shown the introduction to the Big Bang theory show theme song. http://www.youtube.com/watch?v=lhTSfOZUNLo

Students will discuss the Big Bang theory as well as the implications of an ever expanding universe (unbound), or a bound universe.

Planetarium show: Students will be responsible for asking 1 question after the planetarium show has been completed. Participation will be based on in-depth intellectual questions.

After the Show: Students will complete the big bang balloon activity from the Discovery Channel School’s Curriculum Center included below.

Assessments: Students will receive participation points for asking a relevant in depth question after the completion of the planetarium show. Students will be assessed on the completion of the attached worksheet after completing the big bang balloon activity.
The Universe

Big Bang Balloon

Background Information
In the 1920s astronomer Edwin Hubble used the red shift of the spectra of stars to determine that the universe was expanding. By carefully observing the light from galaxies at different distances from Earth, he determined that the farther something was from Earth, the faster it seemed to be moving away. This relationship has become known as Hubble’s Law, and it's just one piece of a bigger puzzle known as the Big Bang theory.

Developed over many years and by many people, the theory states that about 15 billion years ago the universe was compressed into an infinitely small space, known as the primordial atom. It exploded in a sudden burst of energy and created a small, superdense, extremely hot universe that began to expand in all directions. Over time things cooled, and tiny bits of matter clumped together to form stars and galaxies. As a result of this explosion, all of these objects are still moving away from each other. In this experiment, you'll create a simple model to learn how the universe expands over time.

What You Need
- 12-inch (30-cm) round latex balloon
- a permanent felt-tip marking pen
- 24-inch (60-cm) piece of string
- metric ruler

What to Do
1. Inflate your balloon until it is about 4 inches (10 cm) in diameter, but do not tie the end.
2. Using the felt-tip marker, make six dots on the balloon in widely scattered locations. Label one dot “home” and the others A-E. The home dot represents the Milky Way galaxy, and the others represent galaxies formed in the early universe.
3. Without letting air out of the balloon, use the string and ruler to measure the distance from home to each dot. Record the distances in the worksheet table under the heading “Time 1.”
4. Inflate the balloon so that its diameter is about 2 inches (5 cm) bigger. Again measure the distances to each of the dots, and record the distances under “Time 2” on the worksheet.
5. Inflate the balloon in 2-inch (5-cm) increments three more times. After each inflation, measure and record the distances on the worksheet.
6. Answer the follow-up questions on the worksheet.
The Universe

Big Bang Balloon Worksheet

Name: ________________________________

Record your measurements below.

<table>
<thead>
<tr>
<th>Distance from home</th>
<th>Time 1</th>
<th>Time 2</th>
<th>Time 3</th>
<th>Time 4</th>
<th>Time 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dot B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dot C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dot D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dot E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How did the distance from the home dot to each of the other galaxies change each time you inflated the balloon?

Did the galaxies near home or those farther away appear to move the greatest distance?

How could you use this model to simulate the 'Big Crunch,' a time when all the galaxies might collapse in on themselves?

http://www.discoveryschool.com/curriculumcenter/universe